BITSAT syllabus

BITSAT 2011 syllabus
BITSAT is an entrance examination directed for admission in to Birla Institute of Technology and Science for campuses. Birla Institute of Technology and Science institutes are one of the best esteemed institutes for engineering education in India and furnish a number of UG programs to the students.

BITSAT 2011 syllabus for Physics

Physics
1. Units & Measurement
Units (Different systems of units, SI units, fundamental and derived units)
Dimensional Analysis
Precision and significant figures
Fundamental measurements in Physics (Vernier calipers, screw gauge, Physical balance etc)
2. Kinematics
Properties of vectors
Position, velocity and acceleration vectors
Motion with constant acceleration
Projectile motion
Uniform circular motion
Relative motion
3. Newton’s Laws of Motion
Newton’s laws (free body diagram, resolution of forces)
Motion on an inclined plane
Motion of blocks with pulley systems
Circular motion – centripetal force
Inertial and non-inertial frames
4. Impulse and Momentum
Definition of impulse and momentum
Conservation of momentum
Collisions
Momentum of a system of particles
Center of mass
5. Work and Energy
Work done by a force
Kinetic energy and work-energy theorem
Power
Conservative forces and potential energy
Conservation of mechanical energy
6. Rotational Motion
Description of rotation (angular displacement, angular velocity and angular acceleration)
Rotational motion with constant angular acceleration
Moment of inertia, Parallel and perpendicular axes theorems, rotational kinetic energy
Torque and angular momentum
Conservation of angular momentum
Rolling motion
7. Gravitation
Newton’s law of gravitation
Gravitational potential energy, Escape velocity
Motion of planets – Kepler’s laws, satellite motion
8. Mechanics of Solids and Fluids
Elasticity
Pressure, density and Archimedes’ principle
Viscosity and Surface Tension
Bernoulli’s theorem
9. Oscillations
Kinematics of simple harmonic motion
Spring mass system, simple and compound pendulum
Forced & damped oscillations, resonance
10. Waves
Progressive sinusoidal waves
Standing waves in strings and pipes
Superposition of waves, beats
Doppler Effect
11. Heat and Thermodynamics
Kinetic theory of gases
Thermal equilibrium and temperature
Specific heat, Heat Transfer – Conduction, convection and radiation, thermal conductivity, Newton’s law of cooling
Work, heat and first law of thermodynamics
2nd law of thermodynamics, Carnot engine – Efficiency and Coefficient of performance
12. Electrostatics
Coulomb’s law
Electric field (discrete and continuous charge distributions)
Electrostatic potential and Electrostatic potential energy
Gauss’ law and its applications
Electric dipole
Capacitance and dielectrics (parallel plate capacitor, capacitors in series and parallel)
13. Current Electricity
Ohm’s law, Joule heating
D.C circuits – Resistors and cells in series and parallel, Kirchoff’s laws, potentiometer and Wheatstone bridge,
Electrical Resistance (Resistivity, origin and temperature dependence of resistivity).
14. Magnetic Effect of Current
Biot-Savart’s law and its applications
Ampere’s law and its applications
Lorentz force, force on current carrying conductors in a magnetic field
Magnetic moment of a current loop, torque on a current loop, Galvanometer and its conversion to voltmeter and ammeter
15. Electromagnetic Induction
Faraday’s law, Lenz’s law, eddy currents
Self and mutual inductance
Transformers and generators
Alternating current (peak and rms value)
AC circuits, LCR circuits
16. Optics
Laws of reflection and refraction
Lenses and mirrors
Optical instruments – telescope and microscope
Interference – Huygen’s principle, Young’s double slit experiment
Interference in thin films
Diffraction due to a single slit
Electromagnetic waves and their characteristics (only qualitative ideas), Electromagnetic spectrum
Polarization – states of polarization, Malus’ law, Brewster’s law
17. Modern Physics
Dual nature of light and matter – Photoelectric effect, De Broglie wavelength
Atomic models – Rutherford’s experiment, Bohr’s atomic model
Hydrogen atom spectrum
Radioactivity
Nuclear reactions : Fission and fusion, binding energy

BITSAT 2011 syllabus for Chemistry

1. States of Matter
Measurement: Physical quantities and SI units, Dimensional analysis, Precision, Significant figures.
Chemical reactions: Laws of chemical combination, Dalton’s atomic theory; Mole concept; Atomic, molecular and molar masses; Percentage composition empirical & molecular formula; Balanced chemical equations & stoichiometry
Gaseous state: Gas Laws, Kinetic theory – Maxwell distribution of velocities, Average, root mean square and most probable velocities and relation to temperature, Diffusion; Deviation from ideal behaviour – Critical temperature, Liquefaction of gases, van der Waals equation.
Liquid state: Vapour pressure, surface tension, viscosity.
Solid state: Classification; Space lattices & crystal systems; Unit cell – Cubic & hexagonal systems; Close packing; Crystal structures: Simple AB and AB2 type ionic crystals, covalent crystals – diamond & graphite, metals. Imperfections- Point defects, non-stoichiometric crystals; Electrical, magnetic and dielectric properties; Amorphous solids – qualitative description.
2. Atomic Structure
Introduction: Radioactivity, Subatomic particles; Atomic number, isotopes and isobars, Rutherford’s picture of atom; Hydrogen atom spectrum and Bohr model.
Quantum mechanics: Wave-particle duality – de Broglie relation, Uncertainty principle; Hydrogen atom: Quantum numbers and wavefunctions, atomic orbitals and their shapes (s, p, and d), Spin quantum number.
Many electron atoms: Pauli exclusion principle; Aufbau principle and the electronic configuration of atoms, Hund’s rule.
Periodicity: Periodic law and the modern periodic table; Types of elements: s, p, d, and f blocks; Periodic trends: ionization energy, atomic and ionic radii, electron affinity, electro negativity and valency.
3. Chemical Bonding & Molecular Structure
Ionic Bond: Lattice Energy and Born-Haber cycle
Molecular Structure: Lewis picture & resonance structures, VSEPR model & molecular shapes
Covalent Bond: Valence Bond Theory- Orbital overlap, Directionality of bonds & hybridistaion (s, p & d orbitals only), Resonance; Molecular orbital theory- Methodology, Orbital energy level diagram, Bond order, Magnetic properties for homonuclear diatomic species.
Metallic Bond: Qualitative description.
Intermolecular Forces: Polarity; Dipole moments; Hydrogen Bond.
4. Thermodynamics
Basic Concepts: Systems and surroundings; State functions; Intensive & Extensive Properties; Zeroth Law and Temperature
First Law of Thermodynamics: Work, internal energy, heat, enthalpy, heat capacities; Enthalpies of formation, phase transformation, ionization, electron gain; Thermochemistry; Hess’s Law. Bond dissociation, combustion, atomization, sublimation, dilution
Second Law: Spontaneous and reversible processes; entropy; Gibbs free energy related to spontaneity and non-mechanical work; Standard free energies of formation, free energy change and chemical equilibrium.
5. Physical and Chemical Equilibria
Concentration Units: Mole Fraction, Molarity, and Molality
Solutions: Solubility of solids and gases in liquids, Vapour Pressure, Raoult’s law, Relative lowering of vapour pressure, depression in freezing point; elevation in boiling point; osmotic pressure, determination of molecular mass; solid solutions.
Physical Equilibrium: Equilibria involving physical changes (solid-liquid, liquid-gas, solid-gas), Surface chemistry, Adsorption, Physical and Chemical adsorption, Langmuir Isotherm, Colloids and emulsion, classification, preparation, uses.
Chemical Equilibria: Equilibrium constants (KP, KC), Le-Chatelier’s principle.
Ionic Equilibria: Strong and Weak electrolytes, Acids and Bases (Arrhenius, Lewis, Lowry and Bronsted) and their dissociation; Ionization of Water; pH; Buffer solutions; Acid-base titrations; Hydrolysis; Solubility Product of Sparingly Soluble Salts; Common Ion Effect.
Factors Affecting Equilibria: Concentration, Temperature, Pressure, Catalysts, Significance of DG and DG0 in Chemical Equilibria.
6. Electrochemistry
Redox Reactions: Oxidation-reduction reactions (electron transfer concept); Oxidation number; Balancing of redox reactions; Electrochemical cells and cell reactions; Electrode potentials; EMF of Galvanic cells; Nernst equation; Factors affecting the electrode potential; Gibbs energy change and cell potential; Secondary cells; Fuel cells; Corrosion and its prevention.
Electrolytic Conduction: Electrolytic Conductance; Specific and molar conductivities; Kolhrausch’s Law and its application, Faraday’s laws of electrolysis; Coulometer; Electrode potential and electrolysis, Commercial production of the chemicals, NaOH, Na, Al, Cl2 & F2.
7. Chemical Kinetics
Aspects of Kinetics: Rate and Rate expression of a reaction; Rate constant; Order and molecularity of the reaction; Integrated rate expressions and half life for zero and first order reactions.
Factor Affecting the Rate of the Reactions: Concentration of the reactants, size of particles; Temperature dependence of rate constant; Activation energy; Catalysis, Surface catalysis, enzymes, zeolites; Factors affecting rate of collisions between molecules.
Mechanism of Reaction: Elementary reactions; Complex reactions; Reactions involving two/three steps only.
8. Hydrogen and s-block elements
Hydrogen: Element: unique position in periodic table, occurrence, isotopes; Dihydrogen: preparation, properties, reactions, and uses; Molecular, saline, interstitial hydrides; Water: Properties; Structure and aggregation of water molecules; Heavy water; Hydrogen peroxide; Hydrogen as a fuel.
s-block elements: Abundance and occurrence; Anomalous properties of the first elements in each group; diagonal relationships.
Alkali metals: Lithium, sodium and potassium: occurrence, extraction, reactivity, and electrode potentials; Biological importance; Reactions with oxygen, hydrogen, halogens and liquid ammonia; Basic nature of oxides and hydroxides; Halides; Properties and uses of compounds such as NaCl, Na2CO3, NaHCO3, NaOH, KCl, and KOH.
Alkaline earth metals: Magnesium and calcium: Occurrence, extraction, reactivity and electrode potentials; Reactions with non-metals; Solubility and thermal stability of oxo salts; Biological importance; Properties and uses of important compounds such as CaO, Ca(OH)2, plaster of Paris, MgSO4, MgCl2, CaCO3, and CaSO4; Lime and limestone, cement.
9. p- d- and f-block elements
General: Abundance, distribution, physical and chemical properties, isolation and uses of elements; Trends in chemical reactivity of elements of a group;.
Group 13 elements: Boron; Properties and uses of borax, boric acid, boron hydrides & halides. Reaction of aluminum with acids and alkalis;
Group 14 elements: Carbon: Uses, Allotropes (graphite, diamond, fullerenes), oxides, halides and sulphides, carbides; Silicon: Silica, silicates, silicone, silicon tetrachloride, Zeolites.
Group 15 elements: Dinitrogen; Reactivity and uses of nitrogen and its compounds; Industrial and biological nitrogen fixation; Ammonia: Haber’s process, properties and reactions; Oxides of nitrogen and their structures; Ostwald’s process of nitric acid production; Fertilizers – NPK type; Production of phosphorus; Allotropes of phosphorus; Preparation, structure and properties of hydrides, oxides, oxoacids and halides of phosphorus.
Group 16 elements: Isolation and chemical reactivity of dioxygen; Acidic, basic and amphoteric oxides; Preparation, structure and properties of ozone; Allotropes of sulphur; Production of sulphur and sulphuric acid; Structure and properties of oxides, oxoacids, hydrides and halides of sulphur.
Group 17 and group 18 elements: Structure and properties of hydrides, oxides, oxoacids of chlorine; Inter halogen compounds; Bleaching Powder; Preparation, structure and reactions of xenon fluorides, oxides, and oxoacids.
d-Block elements: General trends in the chemistry of first row transition elements; Metallic character; Oxidation state; Ionic radii; Catalytic properties; Magnetic properties; Interstitial compounds; Occurrence and extraction of iron, copper, silver, zinc, and mercury; Alloy formation; Steel and some important alloys; preparation and properties of CuSO4, K2Cr2O7, KMnO4, Mercury halides; Silver nitrate and silver halides; Photography.
f-Block elements: Lanthanoids and actinoids; Oxidation states and chemical reactivity of lanthanoids compounds; Lanthanide contraction; Comparison of actinoids and lanthanoids.
Coordination Compounds: Coordination number; Ligands; Werner’s coordination theory; IUPAC nomenclature; Application and importance of coordination compounds (in qualitative analysis, extraction of metals and biological systems e.g. chlorophyll, vitamin B12, and hemoglobin); Bonding: Valence-bond approach, Crystal field theory (qualitative); Stability constants; Shapes, color and magnetic properties; Isomerism including stereoisomerisms; Organometallic compounds.
10. Principles of Organic Chemistry and Hydrocarbons
Classification: Based on functional groups, trivial and IUPAC nomenclature.
Electronic displacement in a covalent bond: Inductive, resonance effects, and hyperconjugation; free radicals; carbocations, carbanion, nucleophile and electrophile; types of reactions.
Alkanes and cycloalkanes: Structural isomerism and general properties.
Alkenes and alkynes: General methods of preparation and reactions, physical properties, electrophilic and free radical additions, acidic character of alkynes and (1,2 and 1,4) addition to dienes.
Aromatic hydrocarbons: Sources; Properties; Isomerism; Resonance delocalization; polynuclear hydrocarbons; mechanism of electrophilic substitution reaction, directive influence and effect of substituents on reactivity.
Haloalkanes and haloarenes: Physical properties, chemical reactions. Uses and environmental effects; di, tri, tetrachloromethanes, iodoform, freon and DDT.
Petroleum: Composition and refining, uses of petrochemicals.
11. Stereochemistry
Introduction: Chiral molecules; Optical activity; Polarimetry; R,S and D,L configurations; Fischer projections; Enantiomerism; Racemates; Diastereomerism and meso structures.
Conformations: Ethane conformations; Newman and Sawhorse projections.
Geometrical isomerism in alkenes
12. Organic Compounds with Functional Groups Containing Oxygen and Nitrogen
General: Electronic structure, important methods of preparation, important reactions and physical properties of alcohols, phenols, ethers, aldehydes, ketones, carboxylic acids, nitro compounds, amines, diazonium salts, cyanides and isocyanides.
Specific: Effect of substituents on alpha-carbon on acid strength, comparative reactivity of acid derivatives, basic character of amines methods of preparation, and their separation, importance of diazonium salts in synthetic organic chemistry.
13. Biological , Industrial and Environmental chemistry
The Cell: Concept of cell and energy cycle.
Carbohydrates: Classification; Monosaccharides; Structures of pentoses and hexoses; Anomeric carbon; Mutarotation; Simple chemical reactions of glucose, Disaccharides: reducing and non-reducing sugars – sucrose, maltose and lactose; Polysaccharides: elementary idea of structures of starch, cellulose and glycogen.
Proteins: Amino acids; Peptide bond; Polypeptides; Primary structure of proteins; Simple idea of secondary , tertiary and quarternary structures of proteins; Denaturation of proteins and enzymes.
Nucleic Acids: Types of nucleic acids; Primary building blocks of nucleic acids (chemical composition of DNA & RNA); Primary structure of DNA and its double helix; Replication; Transcription and protein synthesis; Genetic code.
Vitamins: Classification, structure, functions in biosystems.
Polymers: Classification of polymers; General methods of polymerization; Molecular mass of polymers; Biopolymers and biodegradable polymers; Free radical, cationic and anionic addition polymerizations; Copolymerization: Natural rubber; Vulcanization of rubber; Synthetic rubbers. Condensation polymers.
Pollution: Environmental pollutants; soil, water and air pollution; Chemical reactions in atmosphere; Smog; Major atmospheric pollutants; Acid rain; Ozone and its reactions; Depletion of ozone layer and its effects; Industrial air pollution; Green house effect and global warming; Green Chemistry.
Chemicals in medicine, health-care and food: Analgesics, Tranquilizers, antiseptics, disinfectants, anti-microbials, anti-fertility drugs, antihistamines, antibiotics, antacids; Preservatives, artificial sweetening agents, antioxidants, soaps and detergents.
14. Theoretical Principles of Experimental Chemistry
Volumetric Analysis: Principles; Standard solutions of sodium carbonate and oxalic acid; Acid-base titrations; Redox reactions involving KI, H2SO4, Na2SO3, Na2S2O3and H2S; Potassium permanganate in acidic, basic and neutral media; Titrations of oxalic acid, ferrous ammonium sulphate with KMnO4, K2 Cr2O7/Na2S2O3, Cu(II)/Na2S2O3.
Qualitative analysis of Inorganic Salts: Principles in the determination of the cations Pb2+, Cu2+, As3+, Mn2+, Zn2+, Co2+, Ca2+, Sr2+, Ba2+, Mg2+, NH4+, Fe3+, Ni2+ and the anions CO32-, S2-, SO42-, SO32-, NO2-, NO3-, Cl-, Br-, I-, PO43-, CH3COO-, C2O42-.
Physical Chemistry Experiments: preparation and crystallization of alum, copper sulphate, ferrous sulphate, double salt of alum and ferrous sulphate, potassium ferric sulphate; Temperature vs. solubility; pH measurements; Lyophilic and lyophobic sols; Dialysis; Role of emulsifying agents in emulsification. Equilibrium studies involving (i) ferric and thiocyanate ions (ii) [Co(H2O)6]2+ and chloride ions; Enthalpy determination for (i) strong acid vs. strong base neutralization reaction (ii) hydrogen bonding interaction between acetone and chloroform; Rates of the reaction between (i) sodium thiosulphate and hydrochloric acid, (ii) potassium iodate and sodium sulphite (iii) iodide vs. hydrogen peroxide, concentration and temperature effects in these reactions.
Purification Methods: Filtration, crystallization, sublimation, distillation, differential extraction, and chromatography. Principles of melting point and boiling point determination; principles of paper chromatographic separation – Rf values.
Qualitative Analysis of Organic Compounds: Detection of nitrogen, sulphur, phosphorous and halogens; Detection of carbohydrates, fats and proteins in foodstuff; Detection of alcoholic, phenolic, aldehydic, ketonic, carboxylic, amino groups and unsaturation.
Quantitative Analysis of Organic Compounds: Basic principles for the quantitative estimation of carbon, hydrogen, nitrogen, halogen, sulphur and phosphorous; Molecular mass determination by silver salt and chloroplatinate salt methods; Calculations of empirical and molecular formulae.
Principles of Organic Chemistry Experiments: Preparation of iodoform, acetanilide, p-nitro acetanilide, di-benzyl acetone, aniline yellow, beta-naphthol; Preparation of acetylene and study of its acidic character.

Address
The Admissions Officer,
BITS
Pilani – 333 031
Rajasthan

No Comments

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a comment

Related Articles
  • Diploma Biomedical Science
  • Diploma in Biomedical Science is adapted for serving the demands of the biomedical and pharmaceutical industry in the areas of research and marketing. The candidate will study in this field the internal workings of living cells, the biological procedures taking proteins and enzymes, the structure, parts and works of the human body, the world of
  • RANI Durgavati University Jabalpur
  • Introduction The University was named as Rani Durgavati Vishwavidyalaya on of degree the well known brave Gond Queen of Garha Mandla and restructured under M.P. Vishwavidyalaya Adhiniyam, 1973. Apart form the regular formal courses the University has began a Department of Tribal Studies that offers studies about the Personal Laws of tribals, their socio-economic structure, their
  • Centre for Cellular and Molecular Physiology Oxford
  • The Centre for Cellular and Molecular Physiology (CCMP) Oxford is located in Oxford, United Kingdom. Centre for Cellular and Molecular Physiology is a new SRIF provided laboratory under construction next to the Henry Welcome Building for Genomic Medicine, the Oxford Protein Production Facility and the new Facility for Evaluation of Infectious Particles. The breadth of know
  • Fee Chart of the Courses Offered By Mumbai University
  • Fee Chart of the Courses Offered By Mumbai University The University of mumbai is a state university located in Maharashtra state of India. It has been given a five-star ranking by NAAC. this university was set up through Dr John Wilson in 1857 and is modeled on the universities of Britain and mainly gives
  • Floriana Group Jobs
  • Floriana Group is based in New Delhi, India. Floriana Group produces herbal oils, specialty perfumery compounds, personal care products. The company also related to production, retail and export of agricultural products, marble mining and processing. Floriana Group has a rich tradition of excellence in quality and a legacy of business leadership in the offering of its
  • LNIPE College Gwalior
  • Laxmibai National Institute of Physical Education, College Gwalior was based through Authorities of Bharat as National College of Physical Education in the yr 17/08/1957. Laxmibai National Institute of Physical Education, College Gwalior historical institute dates from to 1957 and presently it’s attending celeberate 50th day of remembrance in 2007. Laxmibai National Institute of Physical
  • Peerless General Finance & Investment Jobs
  • Peerless General Finance & Investment is a non banking company was established in 1932 which is related to insurance, savings & investments. Its provides financial services provider in the private sector with the lowest servicing cost to the customers. Peerless offers fixed and recurring deposit schemes, daily deposits, wealth builders, family plans, and future protector products
  • Raksha Group Jobs
  • Raksha Group is passionate in designing and creating homes and workspaces that make our living and working simplified. This company combines creative and professional expertise with latest technology coupled with global design approach to give us a sense of pride. Group Companies Anriya Project Management Services Pvt.Ltd. Raksha Architects & Interior Designers Raksha Estates and Properties Career No any
  • Samanta Organics Jobs
  • Samanta organics is a private company, which is related to chemical industry for maintain the most meticulous standards in manufacturing, and prides itself on its high caliber customer service, reliability and speed of response. This company offered chemical related products such as fine chemicals / intermediates and bulk drugs Products Bulk Drugs Mephenesin I.P/B.P.C. Ferrous Glycine Sulphate Chlorphenesin i.p. Fine Chemicals
  • Samanta Organics Jobs
  • Samanta organics is a private company, which is related to chemical industry for maintain the most meticulous standards in manufacturing, and prides itself on its high caliber customer service, reliability and speed of response. This company offered chemical related products such as fine chemicals / intermediates and bulk drugs Products Bulk Drugs Mephenesin I.P/B.P.C. Ferrous Glycine Sulphate Chlorphenesin i.p. Fine Chemicals
  • Agribusiness MBA
  • Faculty of Management Studies, Banaras Hindu University provides the two-year, four-semester Post-Graduate Management program in Agri-Business Administration: Master of Business Administration – Agri-Business (MBA-Agri). This program is guided at Rajiv Gandhi South Campus, Barkachha, Mirzapur. Eligibility requirements for Agribusiness MBA 1.B.Sc. (Ag.) and allied disciplines 2.B.Sc. Home Science/Life Science background: Botany, Zoology, Bio-Chemistry, Bio-Technology under 10+2+3 Scheme 3.Post Graduate
  • IREDA Delhi
  • Introduction Indian Renewable Energy Development Agency Limited was based on 11th Mar, 1987 as a Public fixed Authorities Party below the Parties Act, 1956 and it encourages, arises and extends fiscal assistance for Renewable DOE and DOE Efficiency apartment Preservation Projects. American Indian Renewable Energy Growth Agency Motto is “Energy for Ever.” To increase Indian Renewable
  • Tezpur University PhD
  • Tezpur University PhD Tezpur University was set up by an Act of Parliament in 1994. The articles of this Central University as ideated in the statutes are that it shall endeavor to provide employment oriented and interdisciplinary courses to meet the regional to national ambitions and the development of the state of Assam and also provide
  • IIT Phd Bombay
  • IIT Phd Bombay 2011 IIT Bombay stands for Indian Institute of Technology Bombay were founded in the year 1958 through an Act of Parliament at Powai in Mumbai. Indian Institute of Technology Bombay has available facilities for research, top education and training in different areas of Science and Technology. Above the past some decades, the institute
  • TNOU MBA Assignment
  • TNOU (Tamil Nadu Open University) MBA Assignment is given below: COURSE – MBA I YEAR COURSE CODE BATCH MANAGERIAL ECONOMICS MSP – 11 CY 2008 Time: 1 Hour Total Marks: 25 Part – A (2 x 5 = 10 Marks) Answer any two questions. Each question carries equal marks. 1. Give the properties of isoquants. 2. What is meant by trade cycle? 3.