BITSAT syllabus

BITSAT 2011 syllabus
BITSAT is an entrance examination directed for admission in to Birla Institute of Technology and Science for campuses. Birla Institute of Technology and Science institutes are one of the best esteemed institutes for engineering education in India and furnish a number of UG programs to the students.

BITSAT 2011 syllabus for Physics

Physics
1. Units & Measurement
Units (Different systems of units, SI units, fundamental and derived units)
Dimensional Analysis
Precision and significant figures
Fundamental measurements in Physics (Vernier calipers, screw gauge, Physical balance etc)
2. Kinematics
Properties of vectors
Position, velocity and acceleration vectors
Motion with constant acceleration
Projectile motion
Uniform circular motion
Relative motion
3. Newton’s Laws of Motion
Newton’s laws (free body diagram, resolution of forces)
Motion on an inclined plane
Motion of blocks with pulley systems
Circular motion – centripetal force
Inertial and non-inertial frames
4. Impulse and Momentum
Definition of impulse and momentum
Conservation of momentum
Collisions
Momentum of a system of particles
Center of mass
5. Work and Energy
Work done by a force
Kinetic energy and work-energy theorem
Power
Conservative forces and potential energy
Conservation of mechanical energy
6. Rotational Motion
Description of rotation (angular displacement, angular velocity and angular acceleration)
Rotational motion with constant angular acceleration
Moment of inertia, Parallel and perpendicular axes theorems, rotational kinetic energy
Torque and angular momentum
Conservation of angular momentum
Rolling motion
7. Gravitation
Newton’s law of gravitation
Gravitational potential energy, Escape velocity
Motion of planets – Kepler’s laws, satellite motion
8. Mechanics of Solids and Fluids
Elasticity
Pressure, density and Archimedes’ principle
Viscosity and Surface Tension
Bernoulli’s theorem
9. Oscillations
Kinematics of simple harmonic motion
Spring mass system, simple and compound pendulum
Forced & damped oscillations, resonance
10. Waves
Progressive sinusoidal waves
Standing waves in strings and pipes
Superposition of waves, beats
Doppler Effect
11. Heat and Thermodynamics
Kinetic theory of gases
Thermal equilibrium and temperature
Specific heat, Heat Transfer – Conduction, convection and radiation, thermal conductivity, Newton’s law of cooling
Work, heat and first law of thermodynamics
2nd law of thermodynamics, Carnot engine – Efficiency and Coefficient of performance
12. Electrostatics
Coulomb’s law
Electric field (discrete and continuous charge distributions)
Electrostatic potential and Electrostatic potential energy
Gauss’ law and its applications
Electric dipole
Capacitance and dielectrics (parallel plate capacitor, capacitors in series and parallel)
13. Current Electricity
Ohm’s law, Joule heating
D.C circuits – Resistors and cells in series and parallel, Kirchoff’s laws, potentiometer and Wheatstone bridge,
Electrical Resistance (Resistivity, origin and temperature dependence of resistivity).
14. Magnetic Effect of Current
Biot-Savart’s law and its applications
Ampere’s law and its applications
Lorentz force, force on current carrying conductors in a magnetic field
Magnetic moment of a current loop, torque on a current loop, Galvanometer and its conversion to voltmeter and ammeter
15. Electromagnetic Induction
Faraday’s law, Lenz’s law, eddy currents
Self and mutual inductance
Transformers and generators
Alternating current (peak and rms value)
AC circuits, LCR circuits
16. Optics
Laws of reflection and refraction
Lenses and mirrors
Optical instruments – telescope and microscope
Interference – Huygen’s principle, Young’s double slit experiment
Interference in thin films
Diffraction due to a single slit
Electromagnetic waves and their characteristics (only qualitative ideas), Electromagnetic spectrum
Polarization – states of polarization, Malus’ law, Brewster’s law
17. Modern Physics
Dual nature of light and matter – Photoelectric effect, De Broglie wavelength
Atomic models – Rutherford’s experiment, Bohr’s atomic model
Hydrogen atom spectrum
Radioactivity
Nuclear reactions : Fission and fusion, binding energy

BITSAT 2011 syllabus for Chemistry

1. States of Matter
Measurement: Physical quantities and SI units, Dimensional analysis, Precision, Significant figures.
Chemical reactions: Laws of chemical combination, Dalton’s atomic theory; Mole concept; Atomic, molecular and molar masses; Percentage composition empirical & molecular formula; Balanced chemical equations & stoichiometry
Gaseous state: Gas Laws, Kinetic theory – Maxwell distribution of velocities, Average, root mean square and most probable velocities and relation to temperature, Diffusion; Deviation from ideal behaviour – Critical temperature, Liquefaction of gases, van der Waals equation.
Liquid state: Vapour pressure, surface tension, viscosity.
Solid state: Classification; Space lattices & crystal systems; Unit cell – Cubic & hexagonal systems; Close packing; Crystal structures: Simple AB and AB2 type ionic crystals, covalent crystals – diamond & graphite, metals. Imperfections- Point defects, non-stoichiometric crystals; Electrical, magnetic and dielectric properties; Amorphous solids – qualitative description.
2. Atomic Structure
Introduction: Radioactivity, Subatomic particles; Atomic number, isotopes and isobars, Rutherford’s picture of atom; Hydrogen atom spectrum and Bohr model.
Quantum mechanics: Wave-particle duality – de Broglie relation, Uncertainty principle; Hydrogen atom: Quantum numbers and wavefunctions, atomic orbitals and their shapes (s, p, and d), Spin quantum number.
Many electron atoms: Pauli exclusion principle; Aufbau principle and the electronic configuration of atoms, Hund’s rule.
Periodicity: Periodic law and the modern periodic table; Types of elements: s, p, d, and f blocks; Periodic trends: ionization energy, atomic and ionic radii, electron affinity, electro negativity and valency.
3. Chemical Bonding & Molecular Structure
Ionic Bond: Lattice Energy and Born-Haber cycle
Molecular Structure: Lewis picture & resonance structures, VSEPR model & molecular shapes
Covalent Bond: Valence Bond Theory- Orbital overlap, Directionality of bonds & hybridistaion (s, p & d orbitals only), Resonance; Molecular orbital theory- Methodology, Orbital energy level diagram, Bond order, Magnetic properties for homonuclear diatomic species.
Metallic Bond: Qualitative description.
Intermolecular Forces: Polarity; Dipole moments; Hydrogen Bond.
4. Thermodynamics
Basic Concepts: Systems and surroundings; State functions; Intensive & Extensive Properties; Zeroth Law and Temperature
First Law of Thermodynamics: Work, internal energy, heat, enthalpy, heat capacities; Enthalpies of formation, phase transformation, ionization, electron gain; Thermochemistry; Hess’s Law. Bond dissociation, combustion, atomization, sublimation, dilution
Second Law: Spontaneous and reversible processes; entropy; Gibbs free energy related to spontaneity and non-mechanical work; Standard free energies of formation, free energy change and chemical equilibrium.
5. Physical and Chemical Equilibria
Concentration Units: Mole Fraction, Molarity, and Molality
Solutions: Solubility of solids and gases in liquids, Vapour Pressure, Raoult’s law, Relative lowering of vapour pressure, depression in freezing point; elevation in boiling point; osmotic pressure, determination of molecular mass; solid solutions.
Physical Equilibrium: Equilibria involving physical changes (solid-liquid, liquid-gas, solid-gas), Surface chemistry, Adsorption, Physical and Chemical adsorption, Langmuir Isotherm, Colloids and emulsion, classification, preparation, uses.
Chemical Equilibria: Equilibrium constants (KP, KC), Le-Chatelier’s principle.
Ionic Equilibria: Strong and Weak electrolytes, Acids and Bases (Arrhenius, Lewis, Lowry and Bronsted) and their dissociation; Ionization of Water; pH; Buffer solutions; Acid-base titrations; Hydrolysis; Solubility Product of Sparingly Soluble Salts; Common Ion Effect.
Factors Affecting Equilibria: Concentration, Temperature, Pressure, Catalysts, Significance of DG and DG0 in Chemical Equilibria.
6. Electrochemistry
Redox Reactions: Oxidation-reduction reactions (electron transfer concept); Oxidation number; Balancing of redox reactions; Electrochemical cells and cell reactions; Electrode potentials; EMF of Galvanic cells; Nernst equation; Factors affecting the electrode potential; Gibbs energy change and cell potential; Secondary cells; Fuel cells; Corrosion and its prevention.
Electrolytic Conduction: Electrolytic Conductance; Specific and molar conductivities; Kolhrausch’s Law and its application, Faraday’s laws of electrolysis; Coulometer; Electrode potential and electrolysis, Commercial production of the chemicals, NaOH, Na, Al, Cl2 & F2.
7. Chemical Kinetics
Aspects of Kinetics: Rate and Rate expression of a reaction; Rate constant; Order and molecularity of the reaction; Integrated rate expressions and half life for zero and first order reactions.
Factor Affecting the Rate of the Reactions: Concentration of the reactants, size of particles; Temperature dependence of rate constant; Activation energy; Catalysis, Surface catalysis, enzymes, zeolites; Factors affecting rate of collisions between molecules.
Mechanism of Reaction: Elementary reactions; Complex reactions; Reactions involving two/three steps only.
8. Hydrogen and s-block elements
Hydrogen: Element: unique position in periodic table, occurrence, isotopes; Dihydrogen: preparation, properties, reactions, and uses; Molecular, saline, interstitial hydrides; Water: Properties; Structure and aggregation of water molecules; Heavy water; Hydrogen peroxide; Hydrogen as a fuel.
s-block elements: Abundance and occurrence; Anomalous properties of the first elements in each group; diagonal relationships.
Alkali metals: Lithium, sodium and potassium: occurrence, extraction, reactivity, and electrode potentials; Biological importance; Reactions with oxygen, hydrogen, halogens and liquid ammonia; Basic nature of oxides and hydroxides; Halides; Properties and uses of compounds such as NaCl, Na2CO3, NaHCO3, NaOH, KCl, and KOH.
Alkaline earth metals: Magnesium and calcium: Occurrence, extraction, reactivity and electrode potentials; Reactions with non-metals; Solubility and thermal stability of oxo salts; Biological importance; Properties and uses of important compounds such as CaO, Ca(OH)2, plaster of Paris, MgSO4, MgCl2, CaCO3, and CaSO4; Lime and limestone, cement.
9. p- d- and f-block elements
General: Abundance, distribution, physical and chemical properties, isolation and uses of elements; Trends in chemical reactivity of elements of a group;.
Group 13 elements: Boron; Properties and uses of borax, boric acid, boron hydrides & halides. Reaction of aluminum with acids and alkalis;
Group 14 elements: Carbon: Uses, Allotropes (graphite, diamond, fullerenes), oxides, halides and sulphides, carbides; Silicon: Silica, silicates, silicone, silicon tetrachloride, Zeolites.
Group 15 elements: Dinitrogen; Reactivity and uses of nitrogen and its compounds; Industrial and biological nitrogen fixation; Ammonia: Haber’s process, properties and reactions; Oxides of nitrogen and their structures; Ostwald’s process of nitric acid production; Fertilizers – NPK type; Production of phosphorus; Allotropes of phosphorus; Preparation, structure and properties of hydrides, oxides, oxoacids and halides of phosphorus.
Group 16 elements: Isolation and chemical reactivity of dioxygen; Acidic, basic and amphoteric oxides; Preparation, structure and properties of ozone; Allotropes of sulphur; Production of sulphur and sulphuric acid; Structure and properties of oxides, oxoacids, hydrides and halides of sulphur.
Group 17 and group 18 elements: Structure and properties of hydrides, oxides, oxoacids of chlorine; Inter halogen compounds; Bleaching Powder; Preparation, structure and reactions of xenon fluorides, oxides, and oxoacids.
d-Block elements: General trends in the chemistry of first row transition elements; Metallic character; Oxidation state; Ionic radii; Catalytic properties; Magnetic properties; Interstitial compounds; Occurrence and extraction of iron, copper, silver, zinc, and mercury; Alloy formation; Steel and some important alloys; preparation and properties of CuSO4, K2Cr2O7, KMnO4, Mercury halides; Silver nitrate and silver halides; Photography.
f-Block elements: Lanthanoids and actinoids; Oxidation states and chemical reactivity of lanthanoids compounds; Lanthanide contraction; Comparison of actinoids and lanthanoids.
Coordination Compounds: Coordination number; Ligands; Werner’s coordination theory; IUPAC nomenclature; Application and importance of coordination compounds (in qualitative analysis, extraction of metals and biological systems e.g. chlorophyll, vitamin B12, and hemoglobin); Bonding: Valence-bond approach, Crystal field theory (qualitative); Stability constants; Shapes, color and magnetic properties; Isomerism including stereoisomerisms; Organometallic compounds.
10. Principles of Organic Chemistry and Hydrocarbons
Classification: Based on functional groups, trivial and IUPAC nomenclature.
Electronic displacement in a covalent bond: Inductive, resonance effects, and hyperconjugation; free radicals; carbocations, carbanion, nucleophile and electrophile; types of reactions.
Alkanes and cycloalkanes: Structural isomerism and general properties.
Alkenes and alkynes: General methods of preparation and reactions, physical properties, electrophilic and free radical additions, acidic character of alkynes and (1,2 and 1,4) addition to dienes.
Aromatic hydrocarbons: Sources; Properties; Isomerism; Resonance delocalization; polynuclear hydrocarbons; mechanism of electrophilic substitution reaction, directive influence and effect of substituents on reactivity.
Haloalkanes and haloarenes: Physical properties, chemical reactions. Uses and environmental effects; di, tri, tetrachloromethanes, iodoform, freon and DDT.
Petroleum: Composition and refining, uses of petrochemicals.
11. Stereochemistry
Introduction: Chiral molecules; Optical activity; Polarimetry; R,S and D,L configurations; Fischer projections; Enantiomerism; Racemates; Diastereomerism and meso structures.
Conformations: Ethane conformations; Newman and Sawhorse projections.
Geometrical isomerism in alkenes
12. Organic Compounds with Functional Groups Containing Oxygen and Nitrogen
General: Electronic structure, important methods of preparation, important reactions and physical properties of alcohols, phenols, ethers, aldehydes, ketones, carboxylic acids, nitro compounds, amines, diazonium salts, cyanides and isocyanides.
Specific: Effect of substituents on alpha-carbon on acid strength, comparative reactivity of acid derivatives, basic character of amines methods of preparation, and their separation, importance of diazonium salts in synthetic organic chemistry.
13. Biological , Industrial and Environmental chemistry
The Cell: Concept of cell and energy cycle.
Carbohydrates: Classification; Monosaccharides; Structures of pentoses and hexoses; Anomeric carbon; Mutarotation; Simple chemical reactions of glucose, Disaccharides: reducing and non-reducing sugars – sucrose, maltose and lactose; Polysaccharides: elementary idea of structures of starch, cellulose and glycogen.
Proteins: Amino acids; Peptide bond; Polypeptides; Primary structure of proteins; Simple idea of secondary , tertiary and quarternary structures of proteins; Denaturation of proteins and enzymes.
Nucleic Acids: Types of nucleic acids; Primary building blocks of nucleic acids (chemical composition of DNA & RNA); Primary structure of DNA and its double helix; Replication; Transcription and protein synthesis; Genetic code.
Vitamins: Classification, structure, functions in biosystems.
Polymers: Classification of polymers; General methods of polymerization; Molecular mass of polymers; Biopolymers and biodegradable polymers; Free radical, cationic and anionic addition polymerizations; Copolymerization: Natural rubber; Vulcanization of rubber; Synthetic rubbers. Condensation polymers.
Pollution: Environmental pollutants; soil, water and air pollution; Chemical reactions in atmosphere; Smog; Major atmospheric pollutants; Acid rain; Ozone and its reactions; Depletion of ozone layer and its effects; Industrial air pollution; Green house effect and global warming; Green Chemistry.
Chemicals in medicine, health-care and food: Analgesics, Tranquilizers, antiseptics, disinfectants, anti-microbials, anti-fertility drugs, antihistamines, antibiotics, antacids; Preservatives, artificial sweetening agents, antioxidants, soaps and detergents.
14. Theoretical Principles of Experimental Chemistry
Volumetric Analysis: Principles; Standard solutions of sodium carbonate and oxalic acid; Acid-base titrations; Redox reactions involving KI, H2SO4, Na2SO3, Na2S2O3and H2S; Potassium permanganate in acidic, basic and neutral media; Titrations of oxalic acid, ferrous ammonium sulphate with KMnO4, K2 Cr2O7/Na2S2O3, Cu(II)/Na2S2O3.
Qualitative analysis of Inorganic Salts: Principles in the determination of the cations Pb2+, Cu2+, As3+, Mn2+, Zn2+, Co2+, Ca2+, Sr2+, Ba2+, Mg2+, NH4+, Fe3+, Ni2+ and the anions CO32-, S2-, SO42-, SO32-, NO2-, NO3-, Cl-, Br-, I-, PO43-, CH3COO-, C2O42-.
Physical Chemistry Experiments: preparation and crystallization of alum, copper sulphate, ferrous sulphate, double salt of alum and ferrous sulphate, potassium ferric sulphate; Temperature vs. solubility; pH measurements; Lyophilic and lyophobic sols; Dialysis; Role of emulsifying agents in emulsification. Equilibrium studies involving (i) ferric and thiocyanate ions (ii) [Co(H2O)6]2+ and chloride ions; Enthalpy determination for (i) strong acid vs. strong base neutralization reaction (ii) hydrogen bonding interaction between acetone and chloroform; Rates of the reaction between (i) sodium thiosulphate and hydrochloric acid, (ii) potassium iodate and sodium sulphite (iii) iodide vs. hydrogen peroxide, concentration and temperature effects in these reactions.
Purification Methods: Filtration, crystallization, sublimation, distillation, differential extraction, and chromatography. Principles of melting point and boiling point determination; principles of paper chromatographic separation – Rf values.
Qualitative Analysis of Organic Compounds: Detection of nitrogen, sulphur, phosphorous and halogens; Detection of carbohydrates, fats and proteins in foodstuff; Detection of alcoholic, phenolic, aldehydic, ketonic, carboxylic, amino groups and unsaturation.
Quantitative Analysis of Organic Compounds: Basic principles for the quantitative estimation of carbon, hydrogen, nitrogen, halogen, sulphur and phosphorous; Molecular mass determination by silver salt and chloroplatinate salt methods; Calculations of empirical and molecular formulae.
Principles of Organic Chemistry Experiments: Preparation of iodoform, acetanilide, p-nitro acetanilide, di-benzyl acetone, aniline yellow, beta-naphthol; Preparation of acetylene and study of its acidic character.

Address
The Admissions Officer,
BITS
Pilani – 333 031
Rajasthan

UPSC Grade 2 Exam

UPSC Grade 2 Exam
UPSC symbolizes Union Public Service Commission is an inherent body in India accredited to direct examinations for appointment to the several Civil Services of India. Civil Services Exam is conducted every year by UPSC in two rounds Preliminary & Mains. The preliminary examinations for Civil services exam is conducted in a number of cities throughout the country.

UPSC grade 2 exam
UPSC (Union Public Service Commission) published UPSC Senior Scientific Officers Grade II Exam result .applicants whose participate in this exam they can see their results on UPSC official website by roll no. or by name.

Address
Union Public Service Commission,
Dholpur House, Shahajahan Road,
New Delhi-110069

B.Ed colleges of Rohtak

B.Ed colleges of Rohtak

Rohtak is the centre City of Haryana, situated 70 km North-West of the national capital New Delhi and 210 km South of the state capital Chandigarh, at the National Highway 10. there are so many institution offered one of the best B.ed programme for their students.Here is giving below Contact address of b.ed colleges of rohtak

Address
Gaur Brahman College of Education
Near Gau Karan Tank,
Rohtak -124001

Raj College of Education V.P.O. Brahman Vaas, District Rohtak
ROHTAK haryana India

Sunil Gugnani Memorial College of Education B-5/81 Malgodam Road Rohtak-124001 Haryana
ROHTAK haryana India

V.B. College of Education Rohtak Haryana
ROHTAK haryana India

Vikramaditya College of Education VPO – Morkheri, Tehsil – Sampla Distt. Rohtak Haryana
ROHTAK haryana India

D.A.V. College Society, Hassangarh DAV Campus, Sampla-Sonipat Road, Hassangarh, Distt. Rohtak
ROHTAK haryana 124404 India

IIT Phd Bombay

IIT Phd Bombay 2011

IIT Bombay stands for Indian Institute of Technology Bombay were founded in the year 1958 through an Act of Parliament at Powai in Mumbai. Indian Institute of Technology Bombay has available facilities for research, top education and training in different areas of Science and Technology. Above the past some decades, the institute has undergone dynamic progress in academic also as research activities, along with improvement in infrastructure and facilities, in order to compete with the world’s best establishments.

Phd programme offered at Indian Institute of Technology Bombay
Aerospace Engineering
Department of Biosciences & Bioengineering
Industrial Design Center
Centre of Studies in Resources Engineering(CSRE)
Chemical Engineering
Chemistry
Civil Engineering
Computer Science & Engineering Department
Corrosion Science & Engineering
Earth Sciences
Electrical Engineering
Energy Science & Engineering
Environmental Science & Engineering
Humanities and Social Sciences
Industrial Engineering & Operations Research
Mathematics
Mechanical Engineering
Metallurgical Engineering & Materials Science
Physics
Sailesh .J. Mehta School of Management(SOM)
Systems & Control Engineering

Address
Indian Institute of Technology Bombay
Powai, Mumbai – 400076,
Maharashtra, India

IAT Race Test

IAT Race Test 2011

IAT stands for Implicit Association Test is an observational evaluate within social psychology planned to detect the strength of a person’s automatic association between mental representations of objects (concepts) in memory. Implicit Association Test is commonly applied to examine bias established on race, gender, age, and other demographic characteristics. However, the Implicit Association Test can as well be applied to evaluate other less controversial attitudes, such as an implicit bias in favor of Pepsi (vs. Coke) or flowers (vs. insects).

Implicit Association Test is mainly applied as a research tool to develop theories that effort to understand implicit cognition, i.e. cognitive processes that impress behavior but are unconscious in nature and are inaccessible to observance through the actor. Implicit Association Test was 1st introduced in the scientific literature 1998 through Anthony Greenwald, Debbie McGhee, and Jordan Schwartz. Afterward then research applying the IAT has steadily developed. Implicit Association Test has also been applied in clinical psychology research.

Dhirubhai Ambani IICT

Dhirubhai Ambani IICT 2011

Dhirubhai Ambani IICT (Institute of Information and Communication Technology) is situated at Gandhi Nagar, Gujarat. Dhirubhai ambani iict is the only educational establishment that is named afterward the late Dhirubhai Ambani, who was the founder of the Reliance Group . Dhirubhai ambani IICT founded in the year of 2001, is a non associating University. Dhirubhai ambani iictdoes not receive any aid or other financial assistance from the State or the Central Government.

Program offered at Dhirubhai Ambani IICT
UG programm
B.Tech
Postgraduate Programs
M.Tech. (ICT)
5-Year Dual Degree
M.Sc. (IT)
M.Sc. (ICT in Agriculture and Rural Development)
M.Des. (Communication Design)
Doctor of Philosophy (PhD)

Address
Dhirubhai Ambani IICT
Near Indroda Circle
Gandhinagar – 382 007
Gujarat

CEE Kerala Gov KEAM

CEE Kerala Gov KEAM 2011

CEE stands for Commissioner for Entrance Examinations conducted KEAM (Kerala Engineering and Medical Entrance Exam) is a competitive test which judges students potential as a medical student. If students have just completed their +2 exam this year and want to study medical science, students need to score well in the KEAM .

CEE kerala gov keam main login check
CEE (Commissioner for Entrance Examinations) announced KEAM KEAM (Kerala Engineering and Medical Entrance Exam) results. Students whose participate in this exam they can login on Commissioner for Entrance Examinations, official website and check their CEE kerala results.

Address

The Commissioner for Entrance Examinations,
Vth Floor, Housing Board Buildings,
Santhi Nagar, Thiruvananthapuram-695 001.

Jamnalal Bajaj Institute Distance Learning

Jamnalal Bajaj Institute Distance Learning 2011

Jamnalal Bajaj Institute of Management was set up in the year of 1965 situated at Mumbai metropolis in Maharashtra state in India. Jamnalal Bajaj Institute of Management does not offered any distance learning program may be offered indirectly distance learning programm by any associate institution with it. Jamnalal Bajaj Institute of Management is one of earliest business schools in the nation, Jamnalal Bajaj Institute of Management well known for its financial management programme.

Programmes Offered by Jamnalal Bajaj Institute of Management Studies
Full-time Master of Management Studies (née. MBA) programme
Part-time courses in MHRDM (Master of Human Resource Development and Management),
MMM (Master of Marketing Management),
MFM (Master of Finance Management),
MIM (Master of Information Management).
PhD programme.

Address
Jamnalal Bajaj Institute of Management Studies University of Mumbai,
164, Backbay Reclamation,
H.T. Parekh Marg, Mumbai – 400 020

Annamalai university Bsc visual communication New Syllabus

Annamalai university Bsc visual communication New Syllabus

Annamalai University is a united, education, and residential institution. Annamalai University has had the incomparable good fortune of possessing a succession of eminent Vice-Chancellors to guide its destinies. Throughout the past 82 years the University has developed speedily and has consolidated its position as a unitary and residential University with 49 Departments of Study and above 3240 members on its teaching staff.

Bsc visual communication new syllabus

First Year

Language (Tamil/Hindi/French/Malayalam/Telugu/ Kannada)
English Prose and Composition
Computer Concepts and Office Automation Tools
Media Writing and Graphics
Effective Writing
Introduction to Drawing Concepts
Lab-I (Introduction to Drawing and Office Automation Tools)

Second Year
Communication Concepts and Media Ethics
Photography and Video Editing
Multimedia for Visual Communications – I
Desktop Publishing
Elements of Visual Advertising
Lab – II Multimedia for Visual Communication – I
Lab – III Desktop Publishing
Third Year
Computers in Media Design and Layout
Introduction to 3D Animations
Television Production
Multimedia for Visual Communication – II
Lab – IV – Video Production
Lab – V Multimedia for Visual Communication – II
Project

Address
Annamalai University
Annamalai Nagar – 608 002
Tamil Nadu
India

Scholarship for Medicine Students Davao City

Scholarship for Medicine Students Davao City

Philippine Charity Swepstakes Office and the Department of Health is providing 100 scholarships for medical school every year. Pinoy MD five-year Scholarship Package admits Semestral uniform , daily board and lodging allowance, tuition fees, lab and misc fees and semestral book allowances, allowances, daily travel allowance.
Member Medical Schools list are given below;
UP Manila, NCR
PLM, NCR
EAC, NCR
Fatima, NCR
Davao Medical School Foundation, Davao City
Iloilo Doctors College of Med, Iloilo City
Southwestern State University, Cebu City
Cagayan State University, Tuguegarao
West Visayas State University, Iloilo City
University of St. La Salle, Bacolod City
UP Manila School of Health Sciences, Leyte
Mindanao State University, Iligan City

Pages: 1 2 3 4 5 6 7 8 9 10 ...104 105 106 Next